Ectonucleoside triphosphate diphosphohydrolase 1/CD39, localized in neurons of human and porcine heart, modulates ATP-induced norepinephrine exocytosis.

نویسندگان

  • Takuji Machida
  • Paul M Heerdt
  • Alicia C Reid
  • Ulrich Schäfer
  • Randi B Silver
  • M Johan Broekman
  • Aaron J Marcus
  • Roberto Levi
چکیده

Using a guinea pig heart synaptosomal preparation, we previously observed that norepinephrine (NE) exocytosis was attenuated by a blockade of P2X purinoceptors, potentiated by inhibition of ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1)/CD39, and reduced by soluble CD39, a recombinant form of human E-NTPDase1/CD39. This suggests that norepinephrine and ATP are coreleased upon depolarization of cardiac sympathetic nerve endings and that ATP enhances norepinephrine exocytosis by an action modulated by E-NTPDase1/CD39 activity. Whether E-NTPDase1/CD39 is localized to cardiac neurons and modulates norepinephrine exocytosis in intact heart tissue remained untested. We report that E-NTPDase1/CD39 is selectively localized in human and porcine cardiac neurons and that depolarization of porcine heart tissue elicits omega-conotoxin-inhibitable release of both norepinephrine and ATP. Inhibition of E-NTPDase1/CD39 with ARL67156 markedly potentiated ATP release, demonstrating that E-NTPDase1/CD39 is a major determinant of ATP availability at sympathetic nerve terminals. Notably, inhibition of E-NTPDase1/CD39 enhanced both ATP and NE exocytosis, whereas administration of soluble CD39 reduced both ATP and NE exocytosis. The strong correlation between ATP and norepinephrine release was abolished in the presence of the purinergic P2X receptor (P2XR) antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). We conclude that released ATP governs norepinephrine exocytosis by activating presynaptic P2XR and that this action is controlled by neuronal E-NTPDase1/CD39. Clinically, excessive norepinephrine release is a major cause of arrhythmic and coronary vascular dysfunction during myocardial ischemia. By curtailing NE release, in addition to its effects as an antithrombotic agent, soluble CD39 may constitute a novel therapeutic approach to ischemic complications in the myocardium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression level of ecto-NTP diphosphohydrolase1/CD39 modulates exocytotic and ischemic release of neurotransmitters in a cellular model of sympathetic neurons.

Once released, norepinephrine is removed from cardiac synapses via reuptake into sympathetic nerves, whereas transmitter ATP is catabolized by ecto-NTP diphosphohydrolase 1 (E-NTPDase1)/CD39, an ecto-ATPase. Because ATP is known to modulate neurotransmitter release at prejunctional sites, we questioned whether this action may be ultimately controlled by the expression of E-NTPDase1/CD39 at symp...

متن کامل

Metabolic control of excessive extracellular nucleotide accumulation by CD39/ecto-nucleotidase-1: implications for ischemic vascular diseases.

Platelets are responsible for maintaining vascular integrity. In thrombocytopenic states, vascular permeability and fragility increase, presumably due to the absence of this platelet function. Chemical or physical injury to a blood vessel induces platelet activation and platelet recruitment. This is beneficial for the arrest of bleeding (hemostasis), but when an atherosclerotic plaque is ulcera...

متن کامل

CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury.

BACKGROUND Extracellular adenosine, generated from extracellular nucleotides via ectonucleotidases, binds to specific receptors and provides cardioprotection from ischemia and reperfusion. In the present study, we studied ecto-enzymatic ATP/ADP-phosphohydrolysis by select members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family during myocardial ischemia. METHODS AND R...

متن کامل

NTPDase1/CD39 and aberrant purinergic signalling in the pathogenesis of COPD.

Purinergic receptor activation via extracellular ATP is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Nucleoside triphosphate diphosphohydrolase-1/CD39 hydrolyses extracellular ATP and modulates P2 receptor signalling.We aimed to investigate the expression and function of CD39 in the pathogenesis of cigarette smoke-induced lung inflammation in patients and precli...

متن کامل

The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis

The pathogenesis of primary sclerosing cholangitis (PSC) and the mechanistic link to inflammatory bowel disease remain ill-defined. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1)/clusters of differentiation (CD) 39, the dominant purinergic ecto-enzyme, modulates intestinal inflammation. Here, we have explored the role of CD39 in biliary injury and fibrosis. The impact of CD39 deletio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 313 2  شماره 

صفحات  -

تاریخ انتشار 2005